Copied to
clipboard

G = C42:11D6order 192 = 26·3

9th semidirect product of C42 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42:11D6, C6.952+ 1+4, C4:C4:43D6, (C2xC4):5D12, (C2xC12):11D4, D6:D4:4C2, C4:D12:3C2, (C4xC12):1C22, D6:C4:3C22, C4.71(C2xD12), C12:D4:11C2, C42:C2:9S3, C42:7S3:3C2, C2.7(D4oD12), C12.287(C2xD4), (C2xD12):5C22, (C2xC6).69C24, C22:C4.93D6, C6.13(C22xD4), (C22xD12):14C2, C2.15(C22xD12), (C22xC4).206D6, C22.20(C2xD12), (C2xC12).144C23, C3:1(C22.29C24), (C2xDic6):51C22, C22.98(S3xC23), (C22xS3).19C23, (S3xC23).36C22, (C22xC6).139C23, C23.167(C22xS3), (C2xDic3).23C23, (C22xC12).229C22, (S3xC2xC4):1C22, (C2xC6).50(C2xD4), (C2xC4oD12):18C2, (C3xC4:C4):53C22, (C3xC42:C2):11C2, (C2xC4).149(C22xS3), (C2xC3:D4).100C22, (C3xC22:C4).101C22, SmallGroup(192,1084)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C42:11D6
C1C3C6C2xC6C22xS3S3xC23C22xD12 — C42:11D6
C3C2xC6 — C42:11D6
C1C22C42:C2

Generators and relations for C42:11D6
 G = < a,b,c,d | a4=b4=c6=d2=1, ab=ba, cac-1=ab2, dad=a-1, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 1128 in 334 conjugacy classes, 111 normal (21 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, C12, C12, D6, C2xC6, C2xC6, C2xC6, C42, C22:C4, C22:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xQ8, C4oD4, C24, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xS3, C22xC6, C42:C2, C22wrC2, C4:D4, C4.4D4, C4:1D4, C22xD4, C2xC4oD4, D6:C4, C4xC12, C3xC22:C4, C3xC4:C4, C2xDic6, S3xC2xC4, C2xD12, C2xD12, C2xD12, C4oD12, C2xC3:D4, C22xC12, S3xC23, C22.29C24, C4:D12, C42:7S3, D6:D4, C12:D4, C3xC42:C2, C22xD12, C2xC4oD12, C42:11D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, D12, C22xS3, C22xD4, 2+ 1+4, C2xD12, S3xC23, C22.29C24, C22xD12, D4oD12, C42:11D6

Smallest permutation representation of C42:11D6
On 48 points
Generators in S48
(1 26 4 19)(2 23 5 30)(3 28 6 21)(7 32 44 35)(8 40 45 37)(9 34 46 31)(10 42 47 39)(11 36 48 33)(12 38 43 41)(13 22 16 29)(14 27 17 20)(15 24 18 25)
(1 34 13 41)(2 35 14 42)(3 36 15 37)(4 31 16 38)(5 32 17 39)(6 33 18 40)(7 27 47 23)(8 28 48 24)(9 29 43 19)(10 30 44 20)(11 25 45 21)(12 26 46 22)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 40)(2 39)(3 38)(4 37)(5 42)(6 41)(7 27)(8 26)(9 25)(10 30)(11 29)(12 28)(13 33)(14 32)(15 31)(16 36)(17 35)(18 34)(19 45)(20 44)(21 43)(22 48)(23 47)(24 46)

G:=sub<Sym(48)| (1,26,4,19)(2,23,5,30)(3,28,6,21)(7,32,44,35)(8,40,45,37)(9,34,46,31)(10,42,47,39)(11,36,48,33)(12,38,43,41)(13,22,16,29)(14,27,17,20)(15,24,18,25), (1,34,13,41)(2,35,14,42)(3,36,15,37)(4,31,16,38)(5,32,17,39)(6,33,18,40)(7,27,47,23)(8,28,48,24)(9,29,43,19)(10,30,44,20)(11,25,45,21)(12,26,46,22), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,40)(2,39)(3,38)(4,37)(5,42)(6,41)(7,27)(8,26)(9,25)(10,30)(11,29)(12,28)(13,33)(14,32)(15,31)(16,36)(17,35)(18,34)(19,45)(20,44)(21,43)(22,48)(23,47)(24,46)>;

G:=Group( (1,26,4,19)(2,23,5,30)(3,28,6,21)(7,32,44,35)(8,40,45,37)(9,34,46,31)(10,42,47,39)(11,36,48,33)(12,38,43,41)(13,22,16,29)(14,27,17,20)(15,24,18,25), (1,34,13,41)(2,35,14,42)(3,36,15,37)(4,31,16,38)(5,32,17,39)(6,33,18,40)(7,27,47,23)(8,28,48,24)(9,29,43,19)(10,30,44,20)(11,25,45,21)(12,26,46,22), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,40)(2,39)(3,38)(4,37)(5,42)(6,41)(7,27)(8,26)(9,25)(10,30)(11,29)(12,28)(13,33)(14,32)(15,31)(16,36)(17,35)(18,34)(19,45)(20,44)(21,43)(22,48)(23,47)(24,46) );

G=PermutationGroup([[(1,26,4,19),(2,23,5,30),(3,28,6,21),(7,32,44,35),(8,40,45,37),(9,34,46,31),(10,42,47,39),(11,36,48,33),(12,38,43,41),(13,22,16,29),(14,27,17,20),(15,24,18,25)], [(1,34,13,41),(2,35,14,42),(3,36,15,37),(4,31,16,38),(5,32,17,39),(6,33,18,40),(7,27,47,23),(8,28,48,24),(9,29,43,19),(10,30,44,20),(11,25,45,21),(12,26,46,22)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,40),(2,39),(3,38),(4,37),(5,42),(6,41),(7,27),(8,26),(9,25),(10,30),(11,29),(12,28),(13,33),(14,32),(15,31),(16,36),(17,35),(18,34),(19,45),(20,44),(21,43),(22,48),(23,47),(24,46)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F···2K 3 4A4B4C4D4E4F4G4H4I4J6A6B6C6D6E12A12B12C12D12E···12N
order1222222···234444444444666661212121212···12
size11112212···1222222444412122224422224···4

42 irreducible representations

dim11111111222222244
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D6D6D6D6D122+ 1+4D4oD12
kernelC42:11D6C4:D12C42:7S3D6:D4C12:D4C3xC42:C2C22xD12C2xC4oD12C42:C2C2xC12C42C22:C4C4:C4C22xC4C2xC4C6C2
# reps12244111142221824

Matrix representation of C42:11D6 in GL6(F13)

360000
7100000
0010110
0001011
0010120
0001012
,
1200000
0120000
0010600
007300
0000106
000073
,
12120000
100000
000100
0012100
0001012
00121112
,
110000
0120000
003300
0061000
00331010
0061073

G:=sub<GL(6,GF(13))| [3,7,0,0,0,0,6,10,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,1,0,0,11,0,12,0,0,0,0,11,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,10,7,0,0,0,0,6,3,0,0,0,0,0,0,10,7,0,0,0,0,6,3],[12,1,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,12,0,0,1,1,1,1,0,0,0,0,0,1,0,0,0,0,12,12],[1,0,0,0,0,0,1,12,0,0,0,0,0,0,3,6,3,6,0,0,3,10,3,10,0,0,0,0,10,7,0,0,0,0,10,3] >;

C42:11D6 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{11}D_6
% in TeX

G:=Group("C4^2:11D6");
// GroupNames label

G:=SmallGroup(192,1084);
// by ID

G=gap.SmallGroup(192,1084);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,184,675,570,80,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,a*b=b*a,c*a*c^-1=a*b^2,d*a*d=a^-1,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<